

Noise Technical Report

MILKEN COMMUNITY SCHOOL – MILKEN EAST CAMPUS PROJECT

Prepared for:
Milken Community School (MCS)

November 2025

Report Ref:
R2025130.1

Prepared by:
Acoustical Engineering Services, Inc.
515 South Flower Street, 18th Floor
Los Angeles, CA 90071

Table of Content

Executive summary.....	4
Findings.....	4
1 Introduction.....	6
1.1 Project Description	6
1.2 Purpose	6
2 Environmental Setting	8
2.1 Fundamentals of Sound and Environmental Noise	8
2.1.1 <i>Outdoor Sound Propagation</i>	8
2.1.2 <i>Environmental Noise Descriptors</i>	9
2.2 Applicable Noise Regulations	10
2.2.1 <i>City of Los Angeles General Plan Noise Element</i>	10
2.2.2 <i>City of Los Angeles Noise Regulations (Chapter XI of the LAMC)</i>	12
2.3 Existing Ambient Noise Levels.....	14
2.3.1 <i>Existing Traffic Noise Levels</i>	16
3 Impact Analysis	19
3.1 Methodology.....	19
3.1.1 <i>On-site Stationary Source</i>	19
3.1.2 <i>Off-site Mobile Source</i>	19
3.2 Thresholds of Significance	19
3.2.1 <i>Operations Noise</i>	20
3.3 Operational Noise Impacts	21
3.3.1 <i>On-Site Operational Noise</i>	21
3.3.2 <i>Off-Site Operational Noise</i>	25
3.3.3 <i>Composite Noise Impacts from Project Operations</i>	27
4 References.....	29

List of Figures

Figure 1. Project Site Map.....	7
Figure 2. Noise Sensitive Receptor Locations.....	15

List of Tables

Table 1. Typical Noise Levels.....	9
Table 2. City of Los Angeles Guidelines for Noise Compatible Land Use	12
Table 3. City of Los Angeles Presumed Ambient Noise Levels	13
Table 4. Existing Ambient Noise Levels.....	16
Table 5. Existing Roadway Traffic Noise Levels.....	18
Table 6. Athletic Activities Noise Levels – L_{eq} Analysis.....	23
Table 7. Athletic Activities Noise Levels – L_{10} Analysis.....	24
Table 8. Off-Site Roadway Traffic Noise Impacts – Existing plus Project Conditions	26
Table 9. Off-Site Roadway Traffic Noise Impacts – Future (2026) plus Project Conditions	26
Table 10. Composite Noise Impacts.....	28

Appendices

Appendix A – Ambient Noise Measurements

Appendix B – Operation Noise Calculations

EXECUTIVE SUMMARY

This Noise Technical Report (Report) analyzes potential noise impacts associated with the proposed relocation of the high school component of Milken Community School existing approved school use (Project) to the property commonly known as 15600 Mulholland Drive, located in the City of Los Angeles, California, as shown in Figure 1 (on page 7) (Project Site).

This Report has been prepared in support of the Project's application to the City of Los Angeles for a Conditional Use Permit (CUP) and environmental clearance pursuant to the requirements of the California Environmental Quality Act (CEQA).

Findings

To analyze the potential noise impacts of Project operations, the existing ambient noise environment at the sensitive noise receptors in the vicinity of the Project Site was measured and tabulated in this Report. The measured ambient sound data were utilized as baseline noise levels and in conjunction with the applicable standards and guidelines, was used to define the Project noise impact thresholds. All technical terms and levels of significance are explained in the body of this Report.

The key findings of the Report, all as more fully described later in this Report, are as follows:

Operational Noise Impacts

- On-site stationary noise sources including but not limited to building mechanical equipment and athletic activities (an athletic field, a basketball court, and volleyball court), were evaluated against the City's exterior noise standard. The estimated noise levels from the outdoor athletic activities would range from 34.6 dBA (L_{eq}) at receptor location R1 to 47.9 dBA (L_{eq}) at receptor location R4, which would be below the significance threshold of 5 dBA (L_{eq}) increase above the ambient noise levels. In addition to the L_{eq} noise analysis (per the LAMC), noise impacts in terms of L_{10} impact noise metric were also evaluated representing the intermittent noise levels. The outdoor athletic activities would range from 37.6 dBA (L_{10}) at receptor location R1 to 50.9 dBA (L_{10}) at receptor location R4, which would be below the significance threshold of a 10 dBA increase above ambient noise levels. Therefore, noise impacts associated with Project on-site stationary sources would be less than significant.
- Off-site roadway traffic noise impacts were analyzed based on traffic volumes provided in the Project's Transportation Assessment.¹ The Project would result in a

¹ Gibson Transportation Consulting, Inc., *Transportation Analysis for Milken Community School, Los Angeles, California, October 2025*.

maximum noise increase of 3.5 dBA and 1.7 dBA along Casiano Drive (between Stephen Wise Drive and Casiano Court), during the A.M. and P.M. peak hour, respectively. The estimated noise increases would be below the 5 dBA significance threshold. Therefore, off-site traffic noise impacts associated with the Project would be less than significant; and, therefore, no mitigation measure is required.

- A composite noise analysis was performed to evaluate the noise impacts from all Project-related noise sources, including on-site and off-site sources. The Project would result in a maximum increase of 0.6 dBA CNEL at receptor R1 to 0.8 dBA CNEL at receptor R3. The increases in noise levels due to Project operations at all off-site receptors would be below the 5 dBA CNEL significance threshold and the estimated noise levels would fall within the conditionally acceptable (60 to 70 CNEL) land use category for residential and school uses. Therefore, the composite noise level impacts due to Project operation would be less than significant; and, therefore, no mitigation measure is required.

1 Introduction

This Noise Technical Report (Report) has been prepared to evaluate potential noise impacts associated with the proposed relocation of the high school component of Milken Community School existing approved school use (Project) to the property commonly known as 15600 Mulholland Drive, located in the City of Los Angeles, California. This Report has been prepared pursuant to the requirements of the CEQA.

1.1 Project Description

The Project consists of the relocation of the high school component of Milken Community School (“MCS”)’s from the site of existing approved school use to the property commonly known as 15600 Mulholland Drive, (the “Project Site”) as shown in Figure 1 (on page 7). The MCS currently operates a middle and high school located to the west of the Project Site at 15900 Mulholland Drive, which has a total permitted enrollment of 890 students in grades 6-12. The Project will make use of these existing facilities and does not include any construction or increase in floor area. .

1.2 Purpose

The objectives of this Report are to:

- a) Determine potential noise impacts on existing off-site noise sensitive uses from Project operation-related on-site stationary sources (i.e., mechanical equipment and athletic activities); and
- b) Determine potential noise impacts on existing off-site noise sensitive uses from Project operation-related off-site mobile sources (auto traffic); and
- c) Determine the potential cumulative noise impacts on existing off-site noise sensitive receptors from Project operation-related on-site stationary sources and off-site mobile sources..

Figure 1. Project Site Map

2 Environmental Setting

2.1 Fundamentals of Sound and Environmental Noise

Noise is commonly defined as sound that is undesirable because it interferes with speech communication, and hearing, causes sleep disturbance, or is otherwise annoying (unwanted sound). The decibel (dB) is a conventional unit for measuring the amplitude of sound because it accounts for the large variations in sound pressure amplitude and reflects the way people perceive changes in sound amplitude.² The human hearing system is not equally sensitive to sound at all frequencies. Therefore, to approximate this human frequency-dependent response, the A-weighted filtering system is used to adjust measured sound levels (dBA). The term “A-weighted” refers to filtering the noise signal in a manner that corresponds to the way the human ear perceives sound. Examples of various sound levels in different environments are provided in Table 1 (on page 9).

Generally, people judge the relative magnitude of sound sensation by subjective terms such as “loudness” or “noisiness.” To the normal hearing a change in sound level of 3 dB is considered “barely perceptible,” a change in sound level of 5 dB is considered “readily noticeable,” and a change (i.e., increase) of 10 dB is generally recognized as “two times as loud.”³

2.1.1 Outdoor Sound Propagation

In an outdoor environment, sound levels attenuate (reduce) through the air as a function of distance. Such attenuation is commonly referred to as “distance loss” or “geometric spreading,” and is based on the noise source configuration (e.g., point source, or line source). For a point source, such as a piece of mechanical/electrical/construction equipment (e.g., air conditioner, electrical transformer, or bulldozer) the rate of sound attenuation is about 6 dB per doubling of distance from the noise source to the receptor over acoustically “hard” sites (e.g., asphalt and concrete surfaces) and 7.5 dBA per doubling of distance from the noise source to the receptor over acoustically “soft” sites (e.g., soft dirt, grass or scattered bushes and trees). For example, an outdoor condenser fan that generates a sound level of 60 dBA at a distance of five feet would attenuate to 54 dBA at a distance of 10 feet if located on a “hard” site (52.5 dBA if located on a “soft” site). For a line source, such as a constant flow of traffic on a roadway, the rate of sound attenuation is about 3 dB per doubling of distance.⁴

In addition, structures (e.g., buildings and solid walls) and natural topography (e.g., hills) that obstruct the line-of-sight between a noise source and a receptor further reduce the noise level if the receptor is located within the “shadow” of the obstruction, such as behind a sound wall. This type of sound attenuation is known as “barrier insertion loss.” If a receptor is located behind the wall but still has a view of the source (i.e., line-of-sight is not fully blocked), some

² All sound levels measured in decibel (dB) in this study are relative to 2×10^{-5} N/m².

³ Caltrans, “Technical Noise Supplement (TeNS)”, Table 2-10, 2013.

⁴ Caltrans, “Technical Noise Supplement (TeNS)”, 2013.

barrier insertion loss would still occur, however, to a lesser extent. Additionally, a receptor located on the same side of the wall as a noise source may experience an increase in the perceived noise level as the wall reflects noise back to the receptor, thereby compounding the noise. Outdoor noise barriers can provide noise level reductions ranging from approximately 5 dBA (where a barrier just breaks the acoustic line-of-sight between the noise source and receiver) to an upper range of 20 dBA with a more substantial barrier.⁵

Table 1. Typical Noise Levels

Common Outdoor Activities	Noise Levels, dBA	Common Indoor Activities
	110	Rock Band
Jet Fly-over at 1000 feet		
	100	
Gas Lawn Mower at 3 feet		
	90	
Diesel Truck at 50 feet at 50 mph		Food Blender at 3 feet
	80	Garbage Disposal at 3 feet
Noisy Urban Area, Daytime		
Gas Lawn Mower at 100 feet	70	Vacuum Cleaner at 10 feet
Commercial Area		Normal Speech at 3 feet
Heavy Traffic at 300 feet	60	
		Large Business Office
Quiet Urban Daytime	50	Dishwasher Next Room
Quiet Urban Nighttime	40	Theater, Large Conference Room
Quiet Suburban Nighttime		(Background)
	30	Library
Quiet Rural Nighttime		Bedroom at Night, Concert Hall
	20	(Background)
		Broadcast/Recording Studio
	10	
	0	

Source: Caltrans, *Technical Noise Supplement (TeNS)*, Table 2-5, 2013

2.1.2 Environmental Noise Descriptors

Several rating scales have been developed to analyze the adverse effect of community noise on people. Since environmental noise fluctuates over time, these scales consider the total

⁵ Caltrans, “Technical Noise Supplement (TeNS)”, 2013.

acoustical energy content, as well as the time and duration of occurrence. The most frequently used noise descriptors, including those used by the City, are summarized below.

Equivalent Sound Level (L_{eq}). L_{eq} is a measurement of the acoustic energy content of noise averaged over a specified time period. Thus, the L_{eq} of a time-varying sound and that of a steady sound are the same if they deliver the same amount of energy to the receptor's ear during exposure. L_{eq} for one-hour periods, during the daytime or nighttime hours, and 24 hours are commonly used in environmental noise assessments. L_{eq} can be measured for any duration of time, but is typically measured for an increment of no less than 15 minutes for environmental studies. For evaluating community impacts, this rating scale does not vary, regardless of whether the noise occurs during day or night.

Community Noise Equivalent Level (CNEL). CNEL is the time average of all A-weighted sound levels for a 24-hour day period with a 10 dBA adjustment (increase) added to the sound levels that occur in the nighttime hours (10:00 P.M. to 7:00 A.M.) and a 5 dBA adjustment (increase) added to the sound levels that occur in the evening hours (7:00 P.M. to 10:00 P.M.). These penalties attempt to account for increased human sensitivity to noise during the quieter nighttime periods, when the ambient background noise is less and where sleep is the most probable activity. In comparison, the 24-hour CNEL is approximately equal to the L_{eq} plus 7 dBA, for noise sources that are constant throughout the day, such as, mechanical equipment operating on a 24-hour basis. CNEL has been adopted by the State of California to define the community noise environment for development of the community noise element of a General Plan and is also used by the City of Los Angeles for land use planning.⁶

2.2 Applicable Noise Regulations

The City has adopted a number of regulations and policies, which are based in part on Federal and State regulations that are intended to control, minimize, or mitigate environmental noise effects. The Noise Element of the City of Los Angeles General Plan (General Plan) establishes CNEL guidelines for land use compatibility and includes a number of goals, objectives, and policies for land use planning purposes. The City also has regulations to control unnecessary, excessive, and annoying noise, as set forth in the Los Angeles Municipal Code (LAMC) Chapter XI, Noise Regulation. In addition, the *L.A. CEQA Thresholds Guide* provides thresholds for determining construction noise impacts of a project. These regulations are described further below.

2.2.1 City of Los Angeles General Plan Noise Element

The overall purpose of the Noise Element of the General Plan is to guide policymakers in making land use determinations and in preparing noise ordinances that would limit exposure

⁶ *State of California, General Plan Guidelines, 2003.*

of citizens to excessive noise levels. The following policies and objectives from the Noise Element of the General Plan are applicable to the Project:⁷

- Objective 2 (Non-airport): Reduce or eliminate non-airport related intrusive noise, especially relative to noise-sensitive uses.
- Policy 2.1: Enforce and/or implement applicable City, State, and federal regulations intended to mitigate proposed noise producing activities, reduce intrusive noise and alleviate noise that is deemed a public nuisance.
- Objective 3 (Land Use Development): Reduce or eliminate noise impacts associated with proposed development of land and changes in land use.
- Policy 3.1: Develop land use policies and programs that will reduce or eliminate potential and existing noise impacts.

The City's noise compatibility guidelines are provided in Table 2 (on page 12).

⁷ *Noise Element of the Los Angeles City General Plan, adopted February 3, 1999.*

Table 2. City of Los Angeles Guidelines for Noise Compatible Land Use

Land Use	Community Noise Exposure CNEL (dBA)			
	Normally Acceptable	Conditionally Acceptable	Normally Unacceptable	Clearly Unacceptable
Single-Family, Duplex, Mobile Homes	50 to 60	55 to 70	70 to 75	Above 70
Multi-Family Homes	50 to 65	60 to 70	70 to 75	Above 70
Schools, Libraries, Churches, Hospitals, Nursing Homes	50 to 70	60 to 70	70 to 80	Above 80
Transient Lodging—Motels, Hotels	50 to 65	60 to 70	70 to 80	Above 80
Auditoriums, Concert Halls, Amphitheaters	—	50 to 70	—	Above 65
Sports Arena, Outdoor Spectator Sports	—	50 to 75	—	Above 70
Playgrounds, Neighborhood Parks	50 to 70	—	67 to 75	Above 72
Golf Courses, Riding Stables, Water Recreation, Cemeteries	50 to 75	—	70 to 80	Above 80
Office Buildings, Business and Professional Commercial	50 to 70	67 to 77	Above 75	—
Industrial, Manufacturing, Utilities, Agriculture	50 to 75	70 to 80	Above 75	—

Normally Acceptable: Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction without any special noise insulation requirements.

Conditionally Acceptable: New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice.

Normally Unacceptable: New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

Clearly Unacceptable: New construction or development should generally not be undertaken.

SOURCE: City of Los Angeles, 2006 L.A. CEQA Thresholds Guide, 2006.

2.2.2 *City of Los Angeles Noise Regulations (Chapter XI of the LAMC)*

Chapter XI, Noise Regulation, of the LAMC (referred to herein as the Noise Regulations) establishes acceptable ambient sound levels to regulate intrusive noises (e.g., stationary mechanical equipment and vehicles other than those traveling on public streets) within specific land use zones and provides procedures and criteria for the measurement of the sound level of noise sources. These procedures recognize and account for differences in the perceived level of different types of noise and/or noise sources. In accordance with the Noise Regulations, a noise level increase from certain regulated noise sources of 5 dBA over the existing or presumed ambient noise level at an adjacent property line is considered a violation of the Noise Regulations. The 5-dBA increase above ambient is

applicable to City-regulated noise sources (e.g., mechanical equipment), and it is applicable any time of the day.⁸

The Noise Regulations state that the baseline ambient noise shall be the actual measured ambient noise level or the City's presumed ambient noise level, whichever is greater. The actual ambient noise level is the measured noise level averaged over a period of at least 15 minutes, L_{eq} (15-minute), per LAMC Section 111.01(a). The City's presumed ambient noise levels for specific land use zones, as set forth in LAMC Section 111.03, are provided in Table 3 (below).

Table 3. City of Los Angeles Presumed Ambient Noise Levels

Zone	Daytime (7:00 A.M. to 10:00 P.M.) dBA (L_{eq})	Nighttime (10:00 P.M. to 7:00 A.M.) dBA (L_{eq})
Residential, School, Hospitals, Hotels	50	40
Commercial	60	55
Manufacturing (M1, MR1, and MR2)	60	55
Heavy Manufacturing (M2 and M3)	65	65

Source: LAMC Section 111.03.

Section 112.01 of the LAMC specifies operation of amplified sound system (i.e., machine or device producing, reproducing or amplification of the human voice, music, or any other sound) shall not exceed the ambient noise level on the premises of any other occupied property by more than five (5) decibels.

Section 112.05 of the LAMC sets a maximum noise level from construction equipment (powered equipment or powered hand tools) operating between the hours of 7:00 A.M. and 10:00 P.M., in any residential zone of the City or within 500 feet thereof, of 75 dBA, measured at a distance of 50 feet from the source, unless compliance with this limitation is technically infeasible.⁹

Section 41.40 of the LAMC prohibits construction noise that disturbs people occupying sleeping quarters in any dwelling, hotel, or apartment or other place of residence between the hours of 9:00 P.M. and 7:00 A.M. Monday through Friday, before 8:00 A.M. and after 6:00 P.M. on Saturday or national holiday, and at any time on Sunday. Construction hours may be extended with approval from the Executive Director of the Board of Police Commissioners.

⁸ *Los Angeles Municipal Code, Chapter XI, Section 112.02.*

⁹ *In accordance with the Noise Regulations, "technically feasible" means that the established noise limitations can be complied with at a project site, with the use of mufflers, shields, sound barriers, and/or other noise reduction devices or techniques employed during the operation of equipment.*

Section 91.3307.1 of the LAMC requires that adjoining public and private property shall be protected from damage during construction, remodeling, and demolition work. In addition, Section 91.3307.1 states that *“For excavations, adjacent property shall be protected as set forth in Section 832 of the Civil Code of California.”*

The LAMC also provides noise regulations with respect to vehicle-related noise, including Section 114.02, which prohibits the operation of any motor driven vehicles upon any property within the City in a manner that would cause the noise level on the premises of any occupied residential property to exceed the ambient noise level by more than 5 dBA and Section 114.06, which requires vehicle theft alarm systems shall be silenced within five minutes.

2.3 Existing Ambient Noise Levels

Some land uses are considered more sensitive to intrusive noise than others based on the types of activities typically involved at the receptor location. The *L.A. CEQA Thresholds Guide* states that noise-sensitive uses include residences, transient lodgings, schools, libraries, churches, hospitals, nursing homes, auditoriums, concert halls, amphitheaters, playgrounds, and parks.¹⁰ Based on a review of the land uses in the Project area, a total of four (4) noise receptor locations were selected to represent noise sensitive uses (residential and school uses) surrounding the Project area. The locations of the noise-sensitive receptors are described in Table 4 (on page 16) and depicted on Figure 2 (on page 15), as R1 through R4. Ambient noise measurements were taken at the four selected off-site locations on August 14, 2025.

The ambient noise measurements were conducted using a Larson-Davis Model 870 Integrating/Logging Sound Level Meter and a Quest Technologies Model 2900 Integrating/Logging Sound Level Meters.¹¹ A 24-hour ambient noise measurement was conducted at receptor location R3. Two 15-minute measurements were conducted at each of the off-site receptor locations R1, R2, and R4 during daytime (between 10:00 A.M. and 11:00 A.M.), and nighttime (between 10:00 P.M. and 11:00 P.M.) hours. The ambient noise measurements were recorded in accordance with the City’s standards, which require ambient noise to be measured over a period of at least 15 minutes.¹²

¹⁰ City of Los Angeles, *L.A. CEQA Thresholds Guide*, p. I.1-3.

¹¹ These sound meters meet the minimum industry standard performance requirements for “Type 1” (Larson-Davis Model 870) and “Type 2” (Quest Technologies Model 2900) standard instruments as defined in the American National Standard Institute (ANSI) S1.4. It also meets the requirement specified in Section 111.01(l) of the LAMC that instruments be “Type S2A” standard instruments or better. The sound meter was calibrated and operated according to the manufacturer’s written specifications.

¹² LAMC Section 111.01.

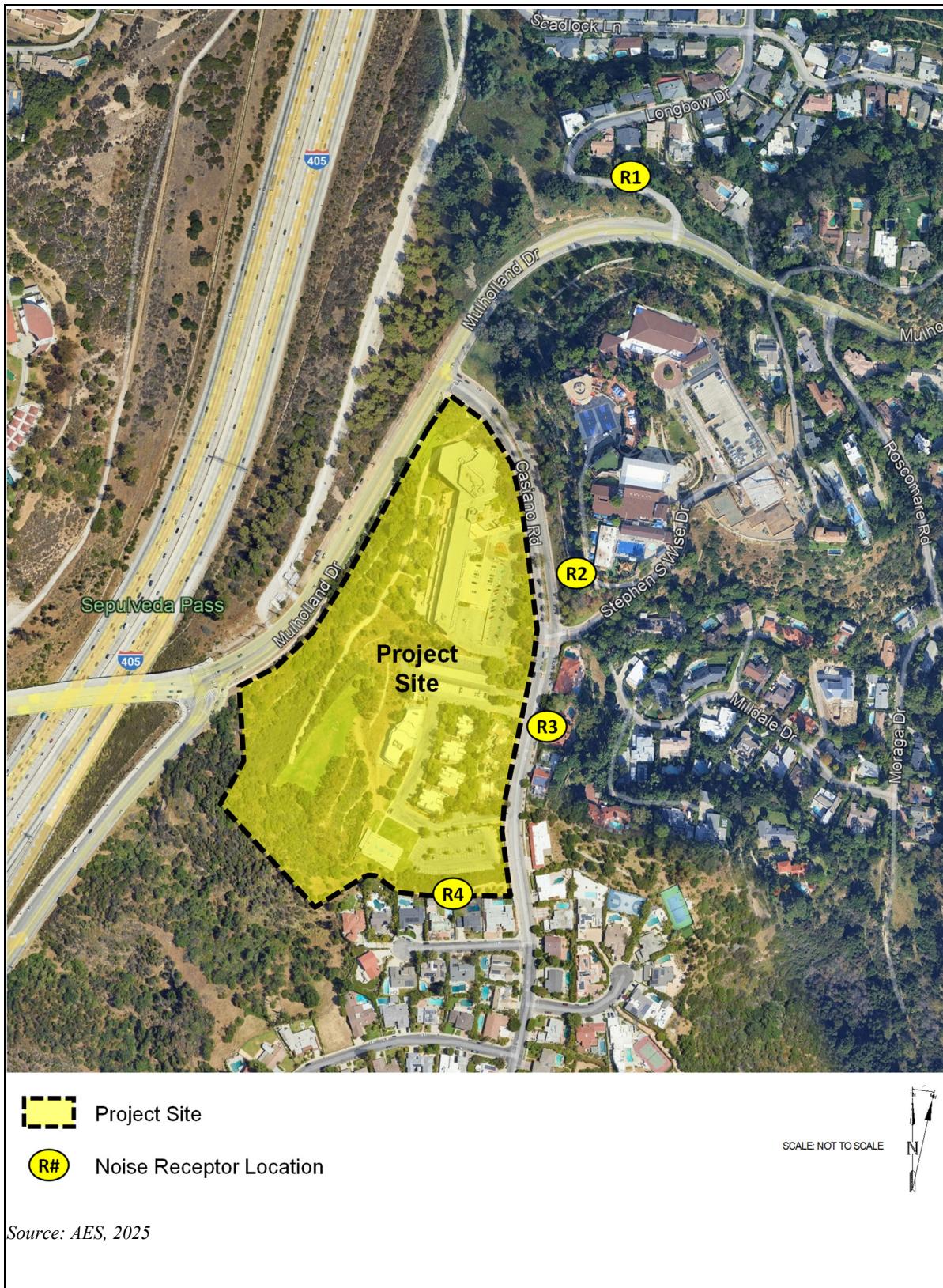


Figure 2. Noise Sensitive Receptor Locations

The results of the ambient sound measurements are summarized in Table 4 (below). As indicated in Table 4, the existing daytime ambient noise levels at the off-site receptor locations ranged from 54.3 dBA L_{eq} (at receptor R4) to 60.0 dBA L_{eq} (at receptor R3), while the measured nighttime ambient noise levels ranged from 50.0 dBA L_{eq} (at receptor R2) to 54.6 dBA L_{eq} (at receptor R1). Based on field observation and measured sound data, the current ambient noise environment in the vicinity of the Project Site is dominated primarily by vehicular traffic on local roadways and other typical urban noise. The existing ambient noise levels at all receptor locations currently exceed the City's exterior presumed daytime ambient noise standard of 50 dBA (L_{eq}) and presumed nighttime ambient noise standard 40 dBA (L_{eq}), for residential uses. Therefore, consistent with the LAMC, the measured existing ambient noise levels are used as the baseline conditions for the purposes of determining the Project's potential noise impacts.

Table 4. Existing Ambient Noise Levels

Receptor Location	Approximate Distance to Project Site, ^a Feet	Measured Noise Levels, dBA L_{eq}	
		Daytime Hours (7 A.M. to 7 P.M.)	Evening Hours (7 P.M. to 10 P.M.)
R1- Single-family residential uses on south side of Longbow Drive, northeast of the Project Site.	815	57.7	54.6
R2- School uses (Stephen Wise School) on the east side of Casiano Road, east of the Project Site.	65	58.6	50.0
R3- Single-family residential uses on the east side of Casiano Road, east of the Project Site.	65	60.0	51.9
R4- Single-family residential uses on the north side of Casiano Court, south of the Project Site.	Adjacent to the Project Site	54.3	52.2

^a Distances are estimated based on Google Earth map and are referenced to the nearest receptor property boundary, and not the building or dwelling itself.

Source: AES, 2025

2.3.1 Existing Traffic Noise Levels

In addition to the ambient noise measurements in the vicinity of the Project Site, the existing traffic related noise on local roadways in the surrounding areas near the Project Site was calculated using the existing traffic volumes provided by the Project traffic consultants.¹³ Four (4) roadway segments were selected to estimate existing traffic related noise levels based on traffic volumes and proximity to noise sensitive uses. Traffic noise levels were calculated using the Federal Highway Administration (FHWA) Traffic Noise Model (TNM) and traffic volume

¹³ Gibson Transportation Consulting, Inc., Transportation Analysis for Milken Community School, Los Angeles, California, October 2025.

data from the Project's Traffic Assessment. The TNM traffic noise prediction model calculates the hourly L_{eq} noise levels based on specific information, including the hourly traffic volume, vehicle type mix, vehicle speed, and distance between the noise receptor and the roadway.

Table 5 (on page 18) provides the calculated traffic noise levels in terms of hourly L_{eq} calculated for the A.M. and P.M. peak hours, and the 24-hour CNEL for the analyzed local roadway segments based on existing traffic volumes. As shown therein, the existing traffic noise levels range from 56.2 dBA L_{eq} along Casiano Road (between Stephen Wise Drive and Casiano Court) to 69.1 dBA L_{eq} along Mulholland Drive (south of Casiano Drive). In addition, the existing CNEL due to surface street traffic volumes ranges from 56.1 dBA CNEL along Casiano Road (between Stephen Wise Drive and Casiano Court) to 68.6 dBA CNEL along Mulholland Drive (south of Casiano Drive).

Table 5. Existing Roadway Traffic Noise Levels

Roadway Segment	Adjacent Noise-Sensitive Land Use	Approximate Distance to Roadway Centerline, feet	Calculated Traffic Noise Levels, ^a			Existing Noise Exposure Compatibility Category ^b	
			Hourly L _{eq} (dBA)		CNEL (dBA)		
			AM Pk. Hr.	PM Pk. Hr.			
Mulholland Drive - North of Casiano Dr. - South of Casiano Dr.	Residential School	35 35	68.7 69.1	66.5 66.7	67.2 67.5	Conditionally Acceptable Conditionally Acceptable	
Casiano Drive - Between Mulholand Dr. and Stephen Wise Dr. - Between Stephen Wise Dr. and Casiano Ct.	School Residential	30 30	61.5 56.2	58.2 56.6	59.6 55.8	Conditionally Acceptable Conditionally Acceptable	

^a Detailed calculation worksheets, are included in Appendix B.^b Noise compatibility is based on the most stringent land use, per City's land use compatibility as provided in Table 2.

Source: AES, 2025.

3 IMPACT ANALYSIS

3.1 Methodology

3.1.1 *On-site Stationary Source*

On-site stationary point-source noise impacts were evaluated by (1) identifying the noise levels that would be generated by the Project's stationary noise sources, including outdoor activities that would take place on-site (e.g., athletic activities), (2) calculating the noise level from each noise source at surrounding sensitive receptor property line locations; and (3) comparing such noise levels to ambient noise levels to determine significance. The on-site stationary noise sources were calculated using SoundPLAN (version 8.2), a 3-dimensional computer noise prediction model, which calculates noise transference (propagation) using approved engineering procedures and incorporates national and international noise standards. This calculation tool is widely used by acoustic engineers as a noise modeling tool for environmental noise analysis.

3.1.2 *Off-site Mobile Source*

Off-site roadway noise was analyzed using the FHWA's TNM, based on the roadway traffic data provided in the Project's Transportation Assessment. The TNM is the current Caltrans standard computer noise model for traffic noise studies. The model allows for the input of roadway parameters, noise receivers, and sound barriers (if any). Roadway noise attributable to the Project "future with project" was calculated and compared to baseline noise levels that would occur under the "future without project" condition, to determine Project noise impacts.

3.2 Thresholds of Significance

The City of Los Angeles utilizes the thresholds of significance in Appendix G of the State CEQA Guidelines. In accordance with Appendix G of the CEQA Guidelines, a project would have a significant impact related to noise and vibration if it would result in:

Threshold (a): Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.

Threshold (b): Generation of excessive groundborne vibration or groundborne noise levels; or

Threshold (c): For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels.

This analysis addresses Threshold (a) with respect to noise impacts from on-site and off-site Project-related operational noise sources. As the Project does not involve any construction, but rather is only reusing existing buildings, Threshold (b) is not addressed any further. In addition, there are no public airports or public use airports within two miles of the Project Site. The nearest public airport, Van Nuys Airport, is located approximately 4.6 miles northeast of the Project Site. As such, the Project would not expose people residing or working in the Project area to excessive airport-related noise levels. Therefore, Threshold (c) is not addressed any further.

3.2.1 *Operations Noise*

The Project's on-site operational noise sources are based on the City's Noise Regulations (i.e., increase in the ambient by 5 dBA). The City Noise Regulations, however, do not apply to off-site traffic traveling on public roads. Therefore, the significance threshold for off-site traffic noise is based on the criteria provided in the *L.A. CEQA Threshold Guide*. Thus, the Project would have a significant noise impact if any of the following events were to occur:

- Off-site traffic from the Project causes the ambient noise levels measured at the property line of affected noise-sensitive uses to increase by 3 dBA in CNEL to or within the “normally unacceptable” or “clearly unacceptable” category: or
- Off-site traffic from the Project causes the ambient noise levels measured at the property line of affected noise-sensitive uses to increase by 5 dBA in CNEL or greater: or
- The Project on-site operational (i.e., non-roadway) noise sources, such as, outdoor mechanical equipment and outdoor activities, increase the ambient noise level (hourly L_{eq}) at noise-sensitive uses by 5 dBA.

The significance criteria used in the noise analysis for on-site operations presented below is an increase in the ambient noise level of 5 dBA (hourly L_{eq}) at the noise-sensitive uses, in accordance with the LAMC. The LAMC does not apply to off-site traffic (i.e., vehicles traveling on public roadways). Therefore, based on the *L.A. CEQA Thresholds Guide*, the significance criteria for off-site traffic noise associated with Project operations is an increase in the ambient noise level by 3 dBA or 5 dBA in CNEL (depending on the land use category) at noise-sensitive uses. In addition, the significance for composite noise levels (on-site and off-site sources) is also based on the *L.A. CEQA Thresholds Guide*, which is an increase in the ambient noise level of 3 dBA or 5 dBA in CNEL (depending on the land use category) for the Project's composite noise (both Project-related on-site and off-site sources) at noise-sensitive uses.

Because noise associated with the Project's athletic fields, basketball and volleyball courts would be generated by human activity, such noise would be expected to be somewhat variable over time. Therefore, in order to evaluate noise levels during these short-term periods of excitement, an additional criterion was used to analyze noise impacts for this specific type of

noise-generating activity from athletic activities based on an L_{10} metric. The L_{10} metric is defined as the noise level exceeded 10 percent of a specified time period (e.g., 6 minutes in an hour). As the players/coaches at athletic activities engage in cheering, clapping and yelling for short periods of time (e.g., cheering, clapping and yelling occurs for seconds or minutes, and is not an instantaneous noise event), the L_{10} metric would appropriately capture elevated noise levels from short-term periods of noise generating. Therefore, in addition to the three criteria listed above, the following criteria provided below was included for evaluating operational noise for the Project:

- The Project on-site athletic activities noise levels, including the athletic practice field, basketball and volleyball courts, as measured in terms of L_{10} increase the ambient noise level (hourly L_{eq}) at noise-sensitive uses by 10 dBA.

3.3 Operational Noise Impacts

Noise associated with the Project operation would include: (a) on-site stationary noise sources, including outdoor mechanical equipment (e.g., HVAC equipment), sport activities within the outdoor facilities (e.g., athletic fields, basketball and volleyball courts); and (b) off-site mobile (roadway traffic) noise sources.

3.3.1 On-Site Operational Noise

3.3.1.1 Mechanical Equipment

The Project includes existing outdoor mechanical equipment (e.g., air ventilation equipment), no new outdoor mechanical equipment expected. Therefore, the Project would not increase existing noise levels and noise impacts from Project mechanical equipment would be less than significant.

3.3.1.2 Athletic Activities

The Project would include an outdoor athletic field, a basketball court, and a volleyball court. Measured noise levels from an existing high school athletic activities, including soccer practices, football practices, and basketball practices, were used for the noise analysis at the Project Site as they represent the similar activities that would occur on the Project Site.¹⁴ Concurrent activities from all outdoor athletic facilities (athletic field, basketball court, and volleyball court) were modeled to present a conservative noise analysis.

Table 6 (on page 23) presents the estimated noise levels (in terms of L_{eq}) at the off-site sensitive receptors, resulting from use of Project outdoor athletic fields. As presented in Table 6, the estimated noise levels from the outdoor athletic activities would range from 34.6 dBA (L_{eq}) at

¹⁴ *City of Los Angeles, Harvard-Westlake River Park Project, Draft Environmental Impact Report, Chapter IV.K Noise, March 2022.*

receptor location R1 to 47.9 dBA (L_{eq}) at receptor location R4, which would be below the significance threshold of 5 dBA (L_{eq}) increase above the ambient noise levels.

In addition to the L_{eq} noise analysis (per the LAMC), noise impacts in terms of L_{10} impact noise metric were also evaluated representing the intermittent noise levels. Table 7 (on page 24) presents the estimated outdoor athletic activities noise levels (in terms of L_{10}) at the off-site sensitive receptors. As indicated in Table 7, the estimated noise levels from the outdoor athletic activities would range from 37.6 dBA (L_{10}) at receptor location R1 to 50.9 dBA (L_{10}) at receptor location R4, which would be below the significance threshold of a 10 dBA increase above ambient noise levels. Therefore, noise impacts from outdoor athletic activities would be less than significant.

Table 6. Athletic Activities Noise Levels – L_{eq} Analysis

Receptor Location	Existing Ambient Noise Levels, dBA (L _{eq})	Estimated Noise from Outdoor Uses, dBA (L _{eq})			Total Project Noise Levels, dBA (L _{eq})	Ambient + Project Noise Levels, dBA (L _{eq})	Significance Threshold ^a	Exceedance over Significance Threshold	Significant Impact?
		Athletic Field	Basketball Court	Volleyball Court					
R1	57.7	34.0	22.6	22.4	34.6	57.7	62.7	0.0	No
R2	58.6	39.2	30.3	30.8	40.2	58.7	63.6	0.0	No
R3	60.0	33.5	34.4	35.6	39.4	60.0	65.0	0.0	No
R4	54.3	38.6	44.2	44.4	47.9	55.2	59.3	0.0	No

Notes:

^a Significance thresholds are equivalent to the measured daytime ambient noise levels plus 5 dBA, per the City of Los Angeles Noise Regulations.

Source: AES, 2025

Table 7. Athletic Activities Noise Levels – L₁₀ Analysis

Receptor Location	Existing Ambient Noise Levels, dBA (L _{eq})	Estimated Noise from Outdoor Uses, dBA (L ₁₀)			Total Project Noise Levels, dBA (L _{eq})	Ambient + Project Noise Levels, dBA (L _{eq})	Significance Threshold ^a	Exceedance over Significance Threshold	Significant Impact?
		Athletic Field	Basketball Court	Volleyball Court					
R1	57.7	37.0	25.7	25.5	37.6	57.7	67.7	0.0	No
R2	58.6	42.2	33.4	33.9	43.3	58.7	68.6	0.0	No
R3	60.0	36.5	37.5	38.7	42.4	60.1	70.0	0.0	No
R4	54.3	41.6	47.3	47.5	50.9	55.9	64.3	0.0	No

Notes:

^a Significance thresholds are equivalent to the measured daytime ambient noise levels plus 10 dBA.

Source: AES, 2025

3.3.2 *Off-Site Operational Noise*

Project-generated traffic noise impacts were evaluated by comparing the increase in noise levels from the “existing without project” condition to the “existing with-project” condition and the “future without project” condition to the “future with project” condition relative to the Project’s significance threshold. Traffic noise levels at the off-site noise sensitive receptors were calculated using FHWA’s Traffic Noise Model and the Project’s traffic volume data. The traffic noise analysis is based on the hourly L_{eq} noise descriptor for the A.M. and P.M. peak hours.

Table 8 (on page 26) provides a summary of the off-site traffic noise analysis under the “existing plus project” condition. As shown in Table 8, traffic from the Project would result in a maximum noise increase of 3.3 dBA and 1.1 dBA along Casiano Drive (between Stephen Wise Drive and Casiano Court), during the A.M. and P.M. peak hour, respectively. Table 9 (on page 26) provides a summary of the off-site traffic noise analysis under the “future (2026) plus project” condition. As shown in Table 9, traffic from the Project would result in a maximum noise increase of 3.5 dBA and 1.7 dBA along Casiano Drive (between Stephen Wise Drive and Casiano Court), during the A.M. and P.M. peak hour, respectively. The estimated noise increases would be below the 5 dBA significance threshold. Therefore, off-site traffic noise impacts associated with the Project would be less than significant.

Table 8. Off-Site Roadway Traffic Noise Impacts – Existing plus Project Conditions

Roadway Segment	Calculated Traffic Noise Levels, ^a Hourly L _{eq} (dBA)				Increase in Noise Levels, Hourly L _{eq} (dBA)		Significant Impact?	
	Existing Without Project		Existing With Project		AM Pk. Hr.	PM Pk. Hr.		
	AM Pk. Hr.	PM Pk. Hr.	AM Pk. Hr.	PM Pk. Hr.				
Mulholland Drive								
- North of Casiano Dr.	68.7	66.5	68.8	66.5	0.1	0.0	No	
- South of Casiano Dr.	69.1	66.7	69.6	66.9	0.5	0.2	No	
Casiano Drive								
- Between Mulholland Dr. and Stephen Wise Dr.	61.5	58.2	63.3	59.3	1.8	1.1	No	
- Between Stephen Wise Dr. and Casiano Ct.	56.2	56.6	59.5	57.7	3.3	1.1	No	

^a Detailed calculation worksheets, are included in Appendix B.

Source: AES, 2021.

Table 9. Off-Site Roadway Traffic Noise Impacts – Future (2026) plus Project Conditions

Roadway Segment	Calculated Traffic Noise Levels, ^a Hourly L _{eq} (dBA)				Increase in Noise Levels, Hourly L _{eq} (dBA)		Significant Impact?	
	Existing Without Project		Existing With Project		AM Pk. Hr.	PM Pk. Hr.		
	AM Pk. Hr.	PM Pk. Hr.	AM Pk. Hr.	PM Pk. Hr.				
Mulholland Drive								
- North of Casiano Dr.	68.8	66.6	68.9	66.6	0.1	0.0	No	
- South of Casiano Dr.	69.2	66.8	69.8	67.1	0.6	0.3	No	
Casiano Drive								
- Between Mulholland Dr. and Stephen Wise Dr.	61.5	58.3	63.6	59.8	2.1	1.5	No	
- Between Stephen Wise Dr. and Casiano Ct.	56.2	56.6	59.7	58.3	3.5	1.7	No	

^a Detailed calculation worksheets, are included in Appendix B.

Source: AES, 2021.

3.3.3 Composite Noise Impacts from Project Operations

An evaluation of composite noise levels, including all Project related noise sources plus existing ambient noise levels, was conducted to identify the potential maximum Project-related noise level increase that may occur at the noise-sensitive receptor locations. The overall sound environment at the sensitive receptors surrounding the Project Site would include contributions from each on-site and off-site individual noise source associated with maximum daily operation of the Project (athletic field, basketball and volleyball courts with maximum noise at each location). Table 10 (on page 28) presents the estimated noise from Project-related noise sources in terms of CNEL. As indicated in Table 10, the Project would result in a maximum increase of 0.6 dBA CNEL at receptor R1 to 0.8 dBA CNEL at receptor R3. The increases in noise levels due to Project operations at all off-site receptors would be below the 5 dBA CNEL significance threshold and the estimated noise levels would fall within the conditionally acceptable (60 to 70 CNEL) land use category for residential and school uses. Therefore, the composite noise level impacts due to Project operation would be less than significant; and, therefore, no mitigation measure is required.

Table 10. Composite Noise Impacts

Receptor Location	Calculated Project-Related Noise Levels, CNEL (dBA)				Project Composite Noise Levels, CNEL (dBA)	Ambient Noise Levels, ^a CNEL (dBA)	Ambient Plus Project Composite Noise Levels, CNEL (dBA)	Increase in Noise Levels Due to Project, CNEL (dBA)	Significance Threshold ^b	Significant Impact?
	Traffic	Athletic Field	Basketball Court	Volleyball Court						
R1	51.8	30.2	19.0	18.8	51.9	60.1	60.7	0.6	65.1	No
R2	50.1	35.4	26.5	27.0	50.3	58.1	58.8	0.7	63.1	No
R3	54.2	29.7	30.6	31.8	54.3	61.3	62.1	0.8	66.3	No
R4	48.2	34.8	40.4	40.6	49.6	57.4	58.1	0.7	62.4	No

Notes:

^a Ambient in CNEL levels are estimated based on the short-term ambient noise measurements based on FTA procedures.

^b Significance criteria are equivalent to the existing ambient plus 3 dBA if the estimated noise levels (ambient plus Project) fall within the “normally unacceptable” or “clearly unacceptable” land use categories or ambient plus 5 dBA if the estimated noise levels fall within the “normally acceptable” or “conditionally acceptable” land use categories, per the City of Los Angeles Noise Element. If the estimated noise levels exceed those significance criteria, a noise impact is identified.

Source: AES, 2025

4 References

California Department of Transportation (Caltrans), *Roadway Construction Noise Model User's Guide*, January 2006.

California Department of Transportation (Caltrans), *Transportation and Construction Vibration Guidance Manual*, September 2013.

California Department of Transportation (Caltrans), *Technical Noise Supplement (TeNS)*, September 2013.

City of Los Angeles, *Municipal Code, Chapter XI Noise Regulation*.

D.A. Bies & C.H. Hansen, *Engineering Noise Control*, 1988.

Federal Highway Administration (FHWA), *Roadway Construction Noise Model User's Guide, 2006*, May 2006.

Federal Transit Administration (FTA), *Transit Noise and Vibration Impact Assessment*, September 2018.

Milken East Campus Project

Noise Impact Analysis

Noise Calculations Worksheets

Provided by Acoustical Engineering Services

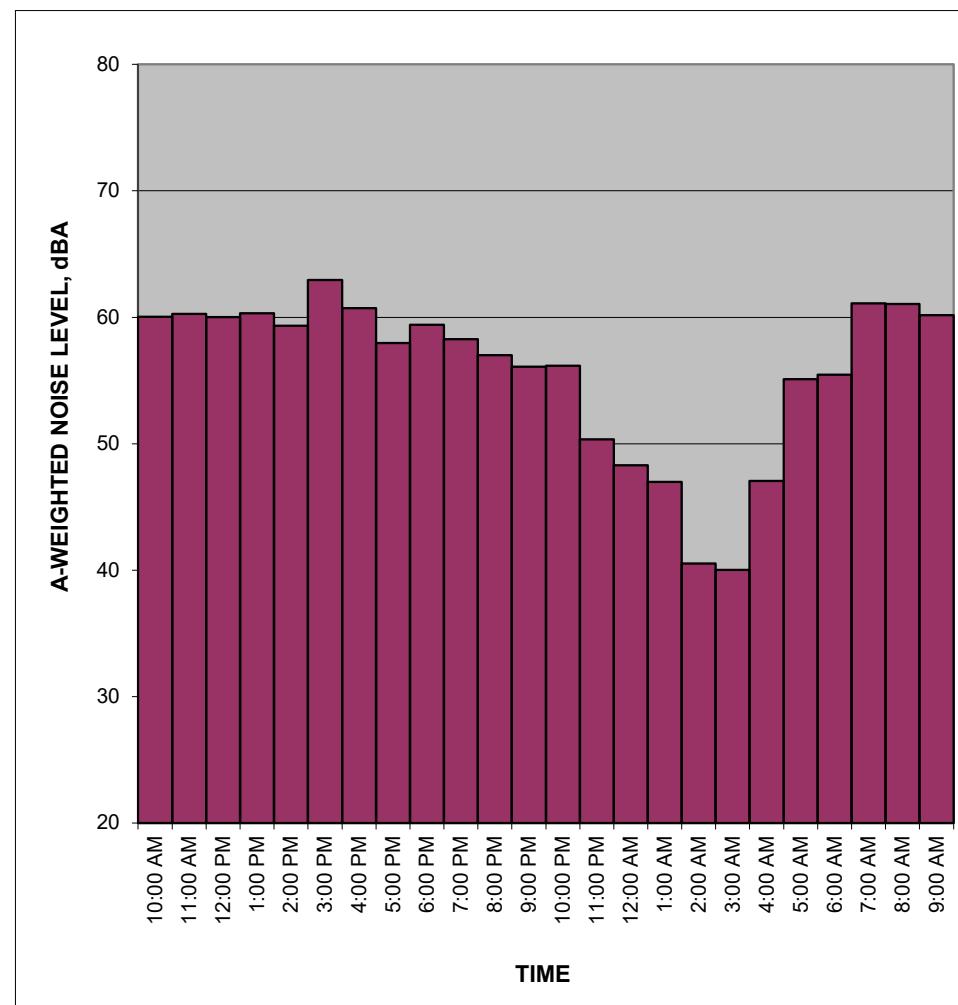
Appendix A – Ambient Measurements

Appendix B – Operation Noise Calculations

Appendix A

Ambient Noise Measurements

Measured Ambient Noise Levels


Project: Milken East Campus

Location: R3

Sources: Ambient

Date: 8/14 - 8/15/2025

TIME	HNL, dB(A)
10:00 AM	60.0
11:00 AM	60.3
12:00 PM	60.0
1:00 PM	60.3
2:00 PM	59.3
3:00 PM	63.0
4:00 PM	60.7
5:00 PM	58.0
6:00 PM	59.4
7:00 PM	58.3
8:00 PM	57.0
9:00 PM	56.1
10:00 PM	56.2
11:00 PM	50.3
12:00 AM	48.3
1:00 AM	47.0
2:00 AM	40.5
3:00 AM	40.0
4:00 AM	47.1
5:00 AM	55.1
6:00 AM	55.5
7:00 AM	61.1
8:00 AM	61.0
9:00 AM	60.2
CNEL, dB(A):	61.3

NOTES:

Daytime average 60.0 dB(A) Leq
Nighttime average 51.9 dB(A) Leq

Location: R1
Date: 8/14/2025

Time	Leq
10:03:21 AM	46.5
10:03:31 AM	48.2
10:03:41 AM	47.8
10:03:51 AM	48.0
10:04:01 AM	46.7
10:04:11 AM	45.7
10:04:21 AM	48.3
10:04:31 AM	58.8
10:04:41 AM	66.5
10:04:51 AM	59.8
10:05:01 AM	58.6
10:05:11 AM	65.6
10:05:21 AM	48.6
10:05:31 AM	60.0
10:05:41 AM	48.2
10:05:51 AM	46.5
10:06:01 AM	47.8
10:06:11 AM	46.6
10:06:21 AM	60.1
10:06:31 AM	62.7
10:06:41 AM	49.2
10:06:51 AM	51.1
10:07:01 AM	56.4
10:07:11 AM	49.4
10:07:21 AM	55.6
10:07:31 AM	46.2
10:07:41 AM	48.6
10:07:51 AM	58.2
10:08:01 AM	43.6
10:08:11 AM	41.9
10:08:21 AM	42.0
10:08:31 AM	41.6
10:08:41 AM	42.2
10:08:51 AM	43.9
10:09:01 AM	47.8
10:09:11 AM	52.9
10:09:21 AM	60.7
10:09:31 AM	60.3
10:09:41 AM	54.4
10:09:51 AM	50.1
10:10:01 AM	59.1
10:10:11 AM	62.3
10:10:21 AM	50.6
10:10:31 AM	45.6

10:10:41 AM	61.2
10:10:51 AM	63.5
10:11:01 AM	59.7
10:11:11 AM	48.6
10:11:21 AM	47.3
10:11:31 AM	48.2
10:11:41 AM	46.0
10:11:51 AM	46.7
10:12:01 AM	48.0
10:12:11 AM	46.9
10:12:21 AM	47.3
10:12:31 AM	63.2
10:12:41 AM	64.3
10:12:51 AM	63.3
10:13:01 AM	55.8
10:13:11 AM	46.2
10:13:21 AM	47.3
10:13:31 AM	64.2
10:13:41 AM	51.9
10:13:51 AM	45.8
10:14:01 AM	42.4
10:14:11 AM	58.2
10:14:21 AM	65.0
10:14:31 AM	46.8
10:14:41 AM	46.9
10:14:51 AM	60.0
10:15:01 AM	59.6
10:15:11 AM	45.9
10:15:21 AM	46.2
10:15:31 AM	62.8
10:15:41 AM	44.1
10:15:51 AM	43.5
10:16:01 AM	47.6
10:16:11 AM	48.4
10:16:21 AM	49.7
10:16:31 AM	52.5
10:16:41 AM	45.5
10:16:51 AM	60.5
10:17:01 AM	56.0
10:17:11 AM	49.6
10:17:21 AM	60.9
10:17:31 AM	62.4
10:17:41 AM	58.8
10:17:51 AM	58.6
10:18:01 AM	54.5
10:18:11 AM	47.0

57.7

Time	Leq
10:01:27 PM	49.2
10:01:37 PM	49.1
10:01:47 PM	49.5
10:01:57 PM	50.3
10:02:07 PM	50.6
10:02:17 PM	54.7
10:02:27 PM	57.4
10:02:37 PM	55.7
10:02:47 PM	53.1
10:02:57 PM	50.9
10:03:07 PM	51.9
10:03:17 PM	57.3
10:03:27 PM	51.4
10:03:37 PM	48.0
10:03:47 PM	47.8
10:03:57 PM	47.9
10:04:07 PM	48.2
10:04:17 PM	54.1
10:04:27 PM	64.3
10:04:37 PM	60.3
10:04:47 PM	64.7
10:04:57 PM	56.7
10:05:07 PM	49.0
10:05:17 PM	48.7
10:05:27 PM	50.4
10:05:37 PM	57.7
10:05:47 PM	49.4
10:05:57 PM	49.1
10:06:07 PM	49.3
10:06:17 PM	49.3
10:06:27 PM	55.1
10:06:37 PM	61.9
10:06:47 PM	49.0
10:06:57 PM	49.6
10:07:07 PM	49.0
10:07:17 PM	48.6
10:07:27 PM	48.5
10:07:37 PM	49.5
10:07:47 PM	50.1
10:07:57 PM	48.9
10:08:07 PM	59.7
10:08:17 PM	49.6
10:08:27 PM	49.2
10:08:37 PM	48.6
10:08:47 PM	49.2
10:08:57 PM	49.4
10:09:07 PM	48.5

10:09:17 PM	48.4
10:09:27 PM	48.9
10:09:37 PM	51.5
10:09:47 PM	49.9
10:09:57 PM	50.6
10:10:07 PM	59.9
10:10:17 PM	50.1
10:10:27 PM	48.4
10:10:37 PM	48.6
10:10:47 PM	49.0
10:10:57 PM	49.5
10:11:07 PM	48.6
10:11:17 PM	48.6
10:11:27 PM	50.9
10:11:37 PM	48.8
10:11:47 PM	48.8
10:11:57 PM	48.6
10:12:07 PM	50.2
10:12:17 PM	49.4
10:12:27 PM	48.7
10:12:37 PM	49.1
10:12:47 PM	65.8
10:12:57 PM	56.7
10:13:07 PM	51.5
10:13:17 PM	57.7
10:13:27 PM	49.3
10:13:37 PM	47.7
10:13:47 PM	48.3
10:13:57 PM	48.1
10:14:07 PM	49.6
10:14:17 PM	48.7
10:14:27 PM	49.6
10:14:37 PM	61.3
10:14:47 PM	51.0
10:14:57 PM	49.5
10:15:07 PM	50.4
10:15:17 PM	48.8
10:15:27 PM	48.4
10:15:37 PM	50.4
10:15:47 PM	50.9
10:15:57 PM	48.5
10:16:07 PM	49.1
10:16:17 PM	47.6
<hr/>	
	54.6

Project: Milken East Campus
 Location: R2
 Date: 8/14/2025

Time	Leq
10:23:11 AM	59.1
10:23:21 AM	57.9
10:23:31 AM	60.6
10:23:41 AM	63.4
10:23:51 AM	57.0
10:24:01 AM	56.9
10:24:11 AM	58.6
10:24:21 AM	53.6
10:24:31 AM	54.5
10:24:41 AM	57.0
10:24:51 AM	53.7
10:25:01 AM	51.3
10:25:11 AM	55.9
10:25:21 AM	54.4
10:25:31 AM	58.9
10:25:41 AM	59.5
10:25:51 AM	55.6
10:26:01 AM	57.8
10:26:11 AM	58.6
10:26:21 AM	57.7
10:26:31 AM	62.6
10:26:41 AM	58.0
10:26:51 AM	55.6
10:27:01 AM	53.5
10:27:11 AM	57.4
10:27:21 AM	56.3
10:27:31 AM	54.3
10:27:41 AM	54.2
10:27:51 AM	55.5
10:28:01 AM	56.5
10:28:11 AM	54.1
10:28:21 AM	56.7
10:28:31 AM	53.9
10:28:41 AM	56.1
10:28:51 AM	56.7
10:29:01 AM	56.4
10:29:11 AM	58.7
10:29:21 AM	59.0
10:29:31 AM	57.9
10:29:41 AM	58.6
10:29:51 AM	59.2
10:30:01 AM	60.1
10:30:11 AM	59.9

10:30:21 AM	62.9
10:30:31 AM	63.1
10:30:41 AM	61.4
10:30:51 AM	58.4
10:31:01 AM	59.4
10:31:11 AM	63.6
10:31:21 AM	64.3
10:31:31 AM	65.1
10:31:41 AM	63.2
10:31:51 AM	57.2
10:32:01 AM	58.1
10:32:11 AM	57.4
10:32:21 AM	50.7
10:32:31 AM	52.5
10:32:41 AM	56.8
10:32:51 AM	55.7
10:33:01 AM	56.9
10:33:11 AM	54.2
10:33:21 AM	55.2
10:33:31 AM	58.2
10:33:41 AM	57.8
10:33:51 AM	56.5
10:34:01 AM	56.7
10:34:11 AM	57.5
10:34:21 AM	56.1
10:34:31 AM	61.0
10:34:41 AM	60.9
10:34:51 AM	61.0
10:35:01 AM	63.8
10:35:11 AM	60.6
10:35:21 AM	58.9
10:35:31 AM	56.7
10:35:41 AM	60.6
10:35:51 AM	57.6
10:36:01 AM	54.0
10:36:11 AM	50.2
10:36:21 AM	51.8
10:36:31 AM	53.0
10:36:41 AM	50.7
10:36:51 AM	51.9
10:37:01 AM	50.5
10:37:11 AM	52.3
10:37:21 AM	54.2
10:37:31 AM	60.8
10:37:41 AM	60.9
10:37:51 AM	56.8
10:38:01 AM	59.1
	58.6

Time	Leq
10:21:21 PM	44.8
10:21:31 PM	44.0
10:21:41 PM	49.7
10:21:51 PM	50.1
10:22:01 PM	50.1
10:22:11 PM	46.7
10:22:21 PM	48.4
10:22:31 PM	47.5
10:22:41 PM	46.6
10:22:51 PM	46.4
10:23:01 PM	44.9
10:23:11 PM	43.8
10:23:21 PM	48.4
10:23:31 PM	51.9
10:23:41 PM	51.1
10:23:51 PM	52.7
10:24:01 PM	54.1
10:24:11 PM	54.4
10:24:21 PM	59.2
10:24:31 PM	56.6
10:24:41 PM	53.4
10:24:51 PM	46.1
10:25:01 PM	43.7
10:25:11 PM	43.9
10:25:21 PM	44.5
10:25:31 PM	44.6
10:25:41 PM	43.7
10:25:51 PM	43.9
10:26:01 PM	44.0
10:26:11 PM	44.2
10:26:21 PM	44.1
10:26:31 PM	44.5
10:26:41 PM	62.5
10:26:51 PM	52.0
10:27:01 PM	46.5
10:27:11 PM	46.0
10:27:21 PM	48.3
10:27:31 PM	49.0
10:27:41 PM	50.0
10:27:51 PM	54.0
10:28:01 PM	50.2
10:28:11 PM	46.0
10:28:21 PM	45.1
10:28:31 PM	45.2
10:28:41 PM	45.4
10:28:51 PM	45.1

10:29:01 PM	44.8
10:29:11 PM	45.2
10:29:21 PM	45.0
10:29:31 PM	44.8
10:29:41 PM	44.9
10:29:51 PM	45.1
10:30:01 PM	45.1
10:30:11 PM	44.9
10:30:21 PM	44.9
10:30:31 PM	45.2
10:30:41 PM	45.3
10:30:51 PM	45.3
10:31:01 PM	45.4
10:31:11 PM	44.9
10:31:21 PM	44.9
10:31:31 PM	45.5
10:31:41 PM	53.1
10:31:51 PM	55.1
10:32:01 PM	47.1
10:32:11 PM	45.0
10:32:21 PM	44.7
10:32:31 PM	44.3
10:32:41 PM	44.6
10:32:51 PM	44.8
10:33:01 PM	44.9
10:33:11 PM	45.1
10:33:21 PM	45.3
10:33:31 PM	45.6
10:33:41 PM	46.1
10:33:51 PM	45.5
10:34:01 PM	53.0
10:34:11 PM	45.5
10:34:21 PM	45.3
10:34:31 PM	45.3
10:34:41 PM	45.0
10:34:51 PM	44.9
10:35:01 PM	44.9
10:35:11 PM	46.2
10:35:21 PM	48.2
10:35:31 PM	51.2
10:35:41 PM	52.6
10:35:51 PM	53.1
10:36:01 PM	48.3
10:36:11 PM	47.4
	50.0

Project: Milken East Campus
 Location: R4
 Date: 8/14/2025

Time	Leq
10:42:37 AM	46.5
10:42:47 AM	44.2
10:42:57 AM	42.5
10:43:07 AM	49.9
10:43:17 AM	54.3
10:43:27 AM	60.6
10:43:37 AM	65.0
10:43:47 AM	59.1
10:43:57 AM	47.8
10:44:07 AM	57.0
10:44:17 AM	41.1
10:44:27 AM	39.9
10:44:37 AM	40.1
10:44:47 AM	41.2
10:44:57 AM	46.0
10:45:07 AM	54.7
10:45:17 AM	46.9
10:45:27 AM	58.9
10:45:37 AM	46.1
10:45:47 AM	50.7
10:45:57 AM	54.2
10:46:07 AM	53.7
10:46:17 AM	50.8
10:46:27 AM	59.6
10:46:37 AM	56.6
10:46:47 AM	59.7
10:46:57 AM	43.5
10:47:07 AM	46.2
10:47:17 AM	42.8
10:47:27 AM	44.2
10:47:37 AM	41.9
10:47:47 AM	43.0
10:47:57 AM	42.3
10:48:07 AM	43.0
10:48:17 AM	45.9
10:48:27 AM	58.8
10:48:37 AM	45.0
10:48:47 AM	49.4
10:48:57 AM	47.3
10:49:07 AM	59.4
10:49:17 AM	59.4
10:49:27 AM	41.9
10:49:37 AM	43.8

10:49:47 AM	44.9
10:49:57 AM	47.9
10:50:07 AM	48.7
10:50:17 AM	59.3
10:50:27 AM	53.1
10:50:37 AM	59.0
10:50:47 AM	60.7
10:50:57 AM	62.2
10:51:07 AM	52.0
10:51:17 AM	47.9
10:51:27 AM	45.2
10:51:37 AM	43.4
10:51:47 AM	42.5
10:51:57 AM	45.9
10:52:07 AM	42.7
10:52:17 AM	52.7
10:52:27 AM	59.8
10:52:37 AM	49.7
10:52:47 AM	58.4
10:52:57 AM	43.4
10:53:07 AM	52.9
10:53:17 AM	48.6
10:53:27 AM	60.9
10:53:37 AM	48.3
10:53:47 AM	42.6
10:53:57 AM	47.6
10:54:07 AM	50.7
10:54:17 AM	49.3
10:54:27 AM	50.5
10:54:37 AM	50.1
10:54:47 AM	60.2
10:54:57 AM	49.3
10:55:07 AM	43.9
10:55:17 AM	41.9
10:55:27 AM	40.3
10:55:37 AM	43.1
10:55:47 AM	41.0
10:55:57 AM	40.8
10:56:07 AM	42.7
10:56:17 AM	45.4
10:56:27 AM	42.2
10:56:37 AM	41.9
10:56:47 AM	42.0
10:56:57 AM	41.1
10:57:07 AM	41.6
10:57:17 AM	41.7
10:57:27 AM	43.9
<hr/>	
	54.3

Time	Leq
10:41:05 PM	45.1
10:41:15 PM	41.6
10:41:25 PM	42.3
10:41:35 PM	45.8
10:41:45 PM	47.4
10:41:55 PM	62.8
10:42:05 PM	49.8
10:42:15 PM	41.9
10:42:25 PM	41.7
10:42:35 PM	41.3
10:42:45 PM	40.6
10:42:55 PM	40.5
10:43:05 PM	41.5
10:43:15 PM	60.9
10:43:25 PM	52.5
10:43:35 PM	43.7
10:43:45 PM	43.2
10:43:55 PM	50.8
10:44:05 PM	65.8
10:44:15 PM	47.2
10:44:25 PM	44.7
10:44:35 PM	44.8
10:44:45 PM	43.9
10:44:55 PM	40.6
10:45:05 PM	40.8
10:45:15 PM	42.2
10:45:25 PM	57.4
10:45:35 PM	63.0
10:45:45 PM	43.6
10:45:55 PM	42.9
10:46:05 PM	42.7
10:46:15 PM	40.9
10:46:25 PM	40.7
10:46:35 PM	40.2
10:46:45 PM	40.2
10:46:55 PM	39.8
10:47:05 PM	39.8
10:47:15 PM	39.8
10:47:25 PM	39.4
10:47:35 PM	38.1
10:47:45 PM	38.1
10:47:55 PM	39.5
10:48:05 PM	40.1
10:48:15 PM	40.1
10:48:25 PM	40.0
10:48:35 PM	40.6

10:48:45 PM	41.8
10:48:55 PM	47.7
10:49:05 PM	63.6
10:49:15 PM	48.1
10:49:25 PM	40.2
10:49:35 PM	40.1
10:49:45 PM	40.8
10:49:55 PM	40.6
10:50:05 PM	40.2
10:50:15 PM	40.2
10:50:25 PM	40.6
10:50:35 PM	41.0
10:50:45 PM	41.3
10:50:55 PM	40.5
10:51:05 PM	39.7
10:51:15 PM	40.2
10:51:25 PM	40.2
10:51:35 PM	40.2
10:51:45 PM	40.7
10:51:55 PM	40.6
10:52:05 PM	40.0
10:52:15 PM	39.9
10:52:25 PM	40.1
10:52:35 PM	39.3
10:52:45 PM	39.5
10:52:55 PM	39.8
10:53:05 PM	40.1
10:53:15 PM	49.7
10:53:25 PM	61.8
10:53:35 PM	41.8
10:53:45 PM	39.1
10:53:55 PM	40.9
10:54:05 PM	38.9
10:54:15 PM	38.0
10:54:25 PM	40.4
10:54:35 PM	40.8
10:54:45 PM	44.0
10:54:55 PM	48.0
10:55:05 PM	40.2
10:55:15 PM	42.2
10:55:25 PM	40.6
10:55:35 PM	40.2
10:55:45 PM	42.5
10:55:55 PM	39.6

52.2

Appendix B

Operation Noise Calculations

Project Composite Noise Calculations (CNEL)

Project: Milken East Campus

With Public Special Events

Receptor	Ambient	Traffic ^a	Athletic Field	Basketball	Volleyball			Project Composite	Ambient + Project	Increase
R1	60.1	51.8	30.2	19.0	18.8			51.9	60.7	0.6
R2	58.1	50.1	35.4	26.5	27.0			50.3	58.8	0.7
R3	61.3	54.2	29.7	30.6	31.8			54.3	62.1	0.8
R4	57.4	48.2	34.8	40.4	40.6			49.6	58.1	0.7

Receptor	Roadway Segment	Traffic Noise Levels, CNEL			distance to roadway, ft	Existing	Existing + Project	barrier	distance to Center Line	adj. for distance
		Existing	Existing + Project	Project Only						
R1	Mulholland Dr.	62.0	62.4	51.8	100	67.5	67.9	0	35	-5.5
R2	Casiano Dr.	53.6	55.2	50.1	100	59.6	61.2	0	30	-6.0
R3	Casiano Dr.	55.8	58.1	54.2	10	55.8	58.1	0	30	0.0
R4	Casiano Dr.	49.8	52.1	48.2	100	55.8	58.1	0	30	-6.0

Outdoor Noise Calculations - Sport Activities - Leq

Project: Milken East Campus

Athletic Field

Estimated Noise Levels, Leq from SOUNDPLAN			Hours of Operations		
Receptor	Leq	CNEL	Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
R1	34.0	30.2	33.2	0.0	0.0
R2	39.2	35.4	38.4	0.0	0.0
R3	33.5	29.7	32.7	0.0	0.0
R4	38.6	34.8	37.8	0.0	0.0

Basketball Court

Estimated Noise Levels, Leq from SOUNDPLAN			Hours of Operations		
Receptor	Leq	CNEL	Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
R1	22.6	19.0	21.8	0.0	0.0
R2	30.3	26.5	29.5	0.0	0.0
R3	34.4	30.6	33.6	0.0	0.0
R4	44.2	40.4	43.4	0.0	0.0

Volleyball Court

Estimated Noise Levels, Leq from SOUNDPLAN			Hours of Operations		
Receptor	Leq	CNEL	Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
R1	22.4	18.8	21.6	0.0	0.0
R2	30.8	27.0	30.0	0.0	0.0
R3	35.6	31.8	34.8	0.0	0.0
R4	44.4	40.6	43.6	0.0	0.0

Combined All Sport Activities

Receptor	Total Project (Leq)	Total Project (CNEL)	ambient (Leq)	Ambient + Project (Leq)	Increase (Leq)
R1	34.6	30.8	54.6	54.6	0.0
R2	40.2	36.5	50.0	50.4	0.4
R3	39.4	35.6	51.9	52.1	0.2
R4	47.9	44.1	52.2	53.6	1.4

Outdoor Noise Calculations - Sport Activities - Leq

Project: Milken East Campus

Athletic Field

Estimated Noise Levels, Leq from SOUNDPLAN			Hours of Operations		
Receptor	Leq	CNEL	Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
R1	37.0		36.2	0.0	0.0
R2	42.2		41.4	0.0	0.0
R3	36.5		35.7	0.0	0.0
R4	41.6		40.8	0.0	0.0

Basketball Court

Estimated Noise Levels, Leq from SOUNDPLAN			Hours of Operations		
Receptor	Leq	CNEL	Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
R1	25.7		24.9	0.0	0.0
R2	33.4		32.6	0.0	0.0
R3	37.5		36.7	0.0	0.0
R4	47.3		46.5	0.0	0.0

Volleyball Court

Estimated Noise Levels, Leq from SOUNDPLAN			Hours of Operations		
Receptor	Leq	CNEL	Ld (7am to 7pm)	Le (7pm to 10pm)	Ln (10pm to 7am)
R1	25.5		24.7	0.0	0.0
R2	33.9		33.1	0.0	0.0
R3	38.7		37.9	0.0	0.0
R4	47.5		46.7	0.0	0.0

Combined All Sport Activities

Receptor	Total Project (Leq)	Total Project (CNEL)	ambient (Leq)	Ambient + Project (Leq)	Increase (Leq)
R1	37.6		54.6	54.7	0.1
R2	43.3		50.0	50.8	0.8
R3	42.4		51.9	52.4	0.5
R4	50.9		52.2	54.6	2.4

Milken East Campus
Source Levels in dB(A) - Athletic Activities (Leq)

Name	Source type	Lw dB(A)	
Basketball Court (Leq)	Area	92.4	
Soccer Field Practice (Leq)	Area	102.7	
Volleyball Court (Leq)	Area	92.4	

Milken East Campus
Contribution level - Athletic Activities (Leq)

Source	Source type	Leq,d dB(A)	
Receiver R1 Leq,d 34.6 dB(A)			
Soccer Field Practice (Leq)	Area	34.0	
Basketball Court (Leq)	Area	22.6	
Volleyball Court (Leq)	Area	22.4	
Receiver R2 Leq,d 40.3 dB(A)			
Soccer Field Practice (Leq)	Area	39.2	
Basketball Court (Leq)	Area	30.3	
Volleyball Court (Leq)	Area	30.8	
Receiver R3 Leq,d 39.3 dB(A)			
Soccer Field Practice (Leq)	Area	33.5	
Basketball Court (Leq)	Area	34.4	
Volleyball Court (Leq)	Area	35.6	
Receiver R4 Leq,d 47.9 dB(A)			
Soccer Field Practice (Leq)	Area	38.6	
Basketball Court (Leq)	Area	44.2	
Volleyball Court (Leq)	Area	44.4	

Milken East Campus
Source Levels in dB(A) - Athletic Activities (L10)

Name	Source type	Lw dB(A)	
Basketball Court (L10)	Area	95.5	
Soccer Field Practice (L10)	Area	105.7	
Volleyball Court (L10)	Area	95.5	

Milken East Campus
Contribution level - Athletic Activities (L10)

Source	Source type	Leq,d dB(A)	
Receiver R1 Leq,d 37.6 dB(A)			
Soccer Field Practice (L10)	Area	37.0	
Basketball Court (L10)	Area	25.7	
Volleyball Court (L10)	Area	25.5	
Receiver R2 Leq,d 43.3 dB(A)			
Soccer Field Practice (L10)	Area	42.2	
Basketball Court (L10)	Area	33.4	
Volleyball Court (L10)	Area	33.9	
Receiver R3 Leq,d 42.4 dB(A)			
Soccer Field Practice (L10)	Area	36.5	
Basketball Court (L10)	Area	37.5	
Volleyball Court (L10)	Area	38.7	
Receiver R4 Leq,d 51.0 dB(A)			
Soccer Field Practice (L10)	Area	41.6	
Basketball Court (L10)	Area	47.3	
Volleyball Court (L10)	Area	47.5	

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

EXISTING CONDITIONS - CNEL

Roadway Segment	Roadway Width*, ft	Distance to Edge of Roadway, ft	Distance to Centerline, feet	Speed mph	Traffic Volume		PHV to ADT factor	Barrier Atten.	Site Adjust., dBA	24-Hour CNEL
					PHV	ADT				
Mulholland Drive										
- North of Casiano Dr.	50	10	35	35	1,369	13,690	10%	0	0	67.2
- South of Casiano Dr.	50	10	35	35	1,476	14,760	10%	0	0	67.5
Casiano Drive										
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	424	4,240	10%	0	0	59.6
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	177	1,770	10%	0	0	55.8

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

EXISTING CONDITIONS - AM PEAK HOUR

Roadway Segment	Roadway Width*, ft	Distance to Edge of Roadway, ft	Distance to Centerline, feet	Speed mph	Traffic Volume		PHV to ADT factor	Barrier Atten.	Site Adjust., dBA	Hour, Leq**
					PHV	ADT				
Mulholland Drive										
- North of Casiano Dr.	50	10	35	35	1,704	17,040	10%	0	0	68.7
- South of Casiano Dr.	50	10	35	35	1,871	18,710	10%	0	0	69.1
Casiano Drive										
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	575	5,750	10%	0	0	61.5
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	168	1,680	10%	0	0	56.2

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

EXISTING CONDITIONS - PM PEAK HOUR		Distance to Edge of Roadway, ft	Distance to Centerline, feet	Speed mph	Traffic Volume	PHV	ADT	PHV to ADT factor	Barrier Atten.	Site Adjust., dBA	Hour, Leq**
Roadway Segment											
Mulholland Drive											
- North of Casiano Dr.		50	10	35	35	1,034	10,340	10%	0	0	66.5
- South of Casiano Dr.		50	10	35	35	1,082	10,820	10%	0	0	66.7
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.		40	10	30	25	272	2,720	10%	0	0	58.2
- Between Stephen Wise Dr. and Casiano Ct.		40	10	30	25	186	1,860	10%	0	0	56.6

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

EXISTING + PROJECT CONDITIONS - CNEL		Distance to Edge of Roadway, ft	Distance to Centerline, feet	Speed mph	Traffic Volume	PHV	ADT	PHV to ADT factor	Barrier Atten.	Site Adjust., dBA	24-Hour CNEL
Roadway Segment											
Mulholland Drive											
- North of Casiano Dr.		50	10	35	35	1,375	13,750	10%	0	0	67.2
- South of Casiano Dr.		50	10	35	35	1,610	16,100	10%	0	0	67.9
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.		40	10	30	25	613	6,130	10%	0	0	61.2
- Between Stephen Wise Dr. and Casiano Ct.		40	10	30	25	300	3,000	10%	0	0	58.1

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

Roadway Segment	EXISTING + PROJECT CONDITIONS - AM PEAK HOUR			Speed mph	Traffic Volume		PHV to ADT factor	Barrier Atten.	Site Adjust., dBA	Hour, Leq**
	Roadway Width*, ft	Distance to Edge of Roadway, ft	Distance to Centerline, feet		PHV	ADT				
Mulholland Drive										
- North of Casiano Dr.	50	10	35	35	1,718	17,180	10%	0	0	68.8
- South of Casiano Dr.	50	10	35	35	2,091	20,910	10%	0	0	69.6
Casiano Drive										
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	879	8,790	10%	0	0	63.3
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	362	3,620	10%	0	0	59.5

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

EXISTING + PROJECT CONDITIONS - PM PEAK HOUR		Distance to	Distance to	Speed	Traffic Volume		PHV to	Barrier	Site	Adjust.,	Hour,
Roadway Segment	Roadway Width*, ft	Edge of Roadway, ft	Centerline, feet		mph	PHV	ADT	ADT factor	Atten.	dBA	Leq**
Mulholland Drive											
- North of Casiano Dr.	50	10	35	35		1,032	10,320	10%	0	0	66.5
- South of Casiano Dr.	50	10	35	35		1,130	11,300	10%	0	0	66.9
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25		347	3,470	10%	0	0	59.3
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25		238	2,380	10%	0	0	57.7

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

FUTURE NO PROJECT CONDITIONS - CNEL		Distance to Edge of Roadway, ft	Distance to Centerline, feet	Speed mph	Traffic Volume	PHV	ADT	PHV to ADT factor	Barrier Atten.	Site Adjust., dBA	24-Hour CNEL
Roadway Segment											
Mulholland Drive											
- North of Casiano Dr.		50	10	35	35	1,383	13,830	10%	0	0	67.3
- South of Casiano Dr.		50	10	35	35	1,492	14,920	10%	0	0	67.6
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.		40	10	30	25	428	4,280	10%	0	0	59.7
- Between Stephen Wise Dr. and Casiano Ct.		40	10	30	25	179	1,790	10%	0	0	55.9

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

FUTURE NO PROJECT CONDITIONS - AM PEAK HOUR		Distance to	Distance to	Speed	Traffic Volume		PHV to	Barrier	Site	Adjust.,	Hour,
Roadway Segment	Roadway	Edge of	Centerline,		mph	PHV	ADT	ADT factor	Atten.	dBA	Leq**
Mulholland Drive											
- North of Casiano Dr.	50	10	35	35	1,722	17,220	10%	0	0	0	68.8
- South of Casiano Dr.	50	10	35	35	1,890	18,900	10%	0	0	0	69.2
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	581	5,810	10%	0	0	0	61.5
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	169	1,690	10%	0	0	0	56.2

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

FUTURE NO PROJECT CONDITIONS - PM PEAK HOUR		Distance to	Distance to	Speed	Traffic Volume		PHV to	Barrier	Site	Adjust.,	Hour,
Roadway Segment	Roadway Width*, ft	Edge of Roadway, ft	Centerline, feet		mph	PHV	ADT	ADT factor	Atten.	dBA	Leq**
Mulholland Drive											
- North of Casiano Dr.	50	10	35	35	1,044	10,440	10%	0	0	0	66.6
- South of Casiano Dr.	50	10	35	35	1,093	10,930	10%	0	0	0	66.8
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	276	2,760	10%	0	0	0	58.3
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	188	1,880	10%	0	0	0	56.6

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

FUTURE + PROJECT CONDITIONS - CNEL		Distance to Edge of Roadway, ft	Distance to Centerline, feet	Speed mph	Traffic Volume	PHV	ADT	PHV to ADT factor	Barrier Atten.	Site Adjust., dBA	24-Hour CNEL
Roadway Segment											
Mulholland Drive											
- North of Casiano Dr.	50	10	35	35	1,406	14,060	10%	0	0	0	67.3
- South of Casiano Dr.	50	10	35	35	1,677	16,770	10%	0	0	0	68.1
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	664	6,640	10%	0	0	0	61.6
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	326	3,260	10%	0	0	0	58.5

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

FUTURE + PROJECT CONDITIONS - AM PEAK HOUR		Distance to	Distance to	Speed	Traffic Volume		PHV to	Barrier	Site	Adjust.,	Hour,
Roadway Segment	Roadway	Edge of	Centerline,		mph	PHV	ADT	ADT factor	Atten.	dBA	Leq**
Mulholland Drive											
- North of Casiano Dr.	50	10	35	35	1,758	17,580	10%	0	0	0	68.9
- South of Casiano Dr.	50	10	35	35	2,178	21,780	10%	0	0	0	69.8
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	937	9,370	10%	0	0	0	63.6
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	376	3,760	10%	0	0	0	59.7

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Off-Site Traffic Noise Calculations

Project: Milken East Campus

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to
ADT factor
10%

FUTURE + PROJECT CONDITIONS - PM PEAK HOUR		Distance to	Distance to	Speed	Traffic Volume		PHV to	Barrier	Site	Adjust.,	Hour,
Roadway Segment	Roadway	Edge of	Centerline,		mph	PHV	ADT	ADT factor	Atten.	dBA	Leq**
Mulholland Drive											
- North of Casiano Dr.	50	10	35	35	1,054	10,540	10%	0	0	0	66.6
- South of Casiano Dr.	50	10	35	35	1,176	11,760	10%	0	0	0	67.1
Casiano Drive											
- Between Mulholland Dr. and Stephen Wise Dr.	40	10	30	25	392	3,920	10%	0	0	0	59.8
- Between Stephen Wise Dr. and Casiano Ct.	40	10	30	25	276	2,760	10%	0	0	0	58.3

* Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.